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Abstract. We propose a new generalized statistical mechanics for anyons based on a simple
ansatz that has the comrect familiar limiting cases. We derive the anyon equation of state from the
grand partition function. We develop the virial expansion and obtain all the virial coefficients.
Furthermore, we demonstrate how thermodynamic quantities such as the molar specific heat
can readily be calculated. We discuss the properties of semions and also demonstrate that ideal
non-relativistic anyons do not exhibit finile temperature condensation.

1. Introduction

Planar physical systems, in two space and one time dimensions, display many peculiar
and interesting quantum properties which have to do with the unusual structure of the
rotation, Lorentz and Poincaré groups in 2 -+ 1 dimensions. These features lead to richer
possibilities for the quantum mechanics of angular momentum and, in particular, give rise
to the existence of quantum states with angular momentum not quantized in the familiar
half-integer units. These objects, named anyons [1-7], have begun to attract a great deal
of attention. The anyon may be relevant to the explanation of a variety of interesting
physical phenomena, such as the Aharanov-Bohm effect, fractional quantized Hall effect,
high-temperature superconductivity and others.

In two dimensions, a particle can be rotated around another particle and such a
transformation enables the two-particle wavefunction to develop a phase which is not well
defined in dimensions higher than two and is uniquely defined only in two dimensions.
Consequently, the spin may be arbitrary, and on account of the connection between spin
and statistics, the statistics is arbitrary in two dimensions.

Anyons lead to a generalization of the usual definition of statistics and the spin-statistics
theorem. In two space dimensions, the wavefunction of the n-particle system yr{gy, ..., g,)
will satisfy

W(fh,---,q_i,---in»---.Q'n)=ciza'!f(Qh---;Q'is---aq_i,---sqﬂ) (1'1)

where the statistics parameter o is an arbitrary real number of modulo integer and the g;
refer to the coordinates and other quantum pumbers. Bosons and fermions correspond to
o = 0 and 1, respectively. The generalization to any statistics corresponds to ¢ = any real
number [2, 4, 5].
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The anyon is a particle which carries both a “charge’ ¢ and a magnetic flux @, which
possesses a spin § = —e®/2hc, which is, in general, neither an integer nor a half integer.
The Chern—-Simons theory (CS) provides a natural realization of the anyon with fractional
statistics. There is a remarkable and mysterious connection between anyons and two-
dimensional conformal field theory, i.e. the algebra of the conformal group SO(2, 1), in
two dimensions, is a symmetry group of CS theory.

Anyonic theory is determined by an angle # which denotes the strength of the fictitious
flux in the magnetic gauge. When two identical anyons are exchanged, the wavefunction
develops a phase €. Anyonic theories specified by @ and @ + 27 are identical and we
can, therefore, restrict the variable to the interval —r < 8 < . Furthermore, theories with
@ and —@ are related by parity or time reversal and so one could restrict the range of 0
to between O and m. The values @ = 0 and m correspond to the bosonic and fermionic
cases, respectively. Alternatively, one could characterize anyon statistics by the parameter
o = &/m, where in two dimensions « can vary continuously between 0 and 1 and thus
interpolate between Bose and Fermi statistics, i.e. @ = 0 yields the Bose-Einstein (BE)
distribution and & = 1 corresponds to the Fermi-Dirac (FD) distribution. The intermediate
value & == % corresponds to the semion. In the so-called anyon gauge, the anyon Hamiltonian
is identical to those for bosons and fermions but the wavefunction satisfies the ‘twisted’
boundary condition: ¥ (8 + 21) = &%y (8), with 0 € o < 1. The breaking of the parity
P and time reversal T discrete symmetries is considered the hall mark of anyon statistics
and this provides a possible signal for experiments to detect the presence of anyons in
two-dimensional phenomena.

The collective excitations above the ground state of systems which exhibit the fractional
quantum Hall effect have been identified as quasi particles of fractional spin and charge
which obey fractional anyon statistics. Anyons have also been conjectured to play an
important role in the theory of high-temperature superconductivity. Furthermore, semions
have also been conjectured to play a role in the pairing theory of high-temperature
superconductors. It has been discovered by Laughlin [8] that an ideal anyon gas is a
superfluid and, consequently, a gas of charged anyons would exhibit superconductivity.

The precise form of the statistical distribution function for anyons remains unknown and
is the outstanding problem in anyon theory today. There have been interesting conjectures
on the statistics interpolating between BE and FD statistics {9] but no clear answers have
emerged. There have been perturbative investigations of the anyon gas [10]. This approach
to the problem involves a perturbative study into the properties of the anyon gas at values
close to & = 0 or x, regarded as an expansion around the boson or fermion, which can
yield approximate results for the statistical properties of the anyon gas [11]. The exact two-
particle partition function has been solved by Arovas et al [12] leading to a computation of
the second virial coefficient in the virial expansion, which is valid for low densities and/or
high temperatures. Some progress has been made in the computation of the third virial
coefficient. Since determining the grand partition function and establishing the equation of
state is a many-anyon problem, it has been regarded as an insoluble problem and no exact
results are known.

It is the purpose of this paper to attack the problem in an entirely new fashion. We begin
with the simplest natural generalization of the familiar BE and FD statistical distribution
function. We are then lead to an ansatz which, to the best of our knowledge, correctly
describes the statistical distribution for anyons. On the basis of this, we are able to develop
a full statistical anyon theory and obtain all the usval statistical and thermodynamic quantities
characterizing anyons, We hope this will lead to a better understanding of the statistical,
thermodynamical and other properties of the anyon gas.
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2. Equation of state and virial expansion: B-anyons

We begin with the requirement that the statistical distribution function for anyons should
involve the statistics determining parameter o explicitly and it should have the correct
smooth limiting forms when « = 0 (bosonic case) and 1 (fermionic case). We, therefore,
propose that the following ansatz provides the appropriate distribution function for the
anyons:

1

N = 2.1
N~y @D

where f(«) is a function of & which satisfies the boundary conditions or property: f(0) = 1,
f(+1) = —1. We further require that £(0) = 0 in order to include the quantum Boltzmann
case [13]. We shall also assume that the statistics determining parameter « and, hence, f{x)
is independent of temperature. This ansatz is our conjecture and fundamental postulate and,
aside from these boundary conditions, there are no restrictions on the function f(x). Here,
k labels the energy states, 8 = 1/&T, u is the chemical potential and y =+ 1=2¢ +1
denotes the multiplicity. This form interpolates between BE statistics, with o = 0, and Fb
statistics with & = 1. The sum in equation (2.1) gives the correct distribution function for
the cases of BE and FD statistics but there is a problem with the case of anyons since the
N-body wavefunction cannot be constructed from products of single-particle wavefunctions,
because one has to represent the braid group. Therefore, one needs to work in the anyon
gauge [5] when the Harniltonian is identical for bosonic, fermionic and anyonic systems but
the many-body wavefunctions have different symmetry properties for different statistics.

There are sound reasons why we should consider the iwo cases of positive and negative
values for f(o) separately. For the case of negative f{), let us set f(w) = —g{w), and,
thus, consider the generalization which enables us to deal with two types of anyon. The
range of & which corresponds to f > 0 and g > O will not be specified at this point.
Indeed, we shall determine and discuss it later. Accordingly, the following distribution
functions describe boson-like (B-anyons, abbreviated as BA) and fermion-like anyons (F-
anyons, abbreviated as FA):

1 1
BA __ FA _ .
N =y ; eHE—u) — f NT=vy ; eflEi-0) 4 g 22)

henceforward, regarding f and g as functions of the parameter . We shall first investigate
the equation of state for boson-like anyons, without concerning ourselves with condensation,
Thus, the average occupation number of B-anyons is given by

i
BA _
N =y gEw sy @3)

where e## = z is the fugacity. Corresponding to this ansatz for the anyons, we propose the
following ansatz for the grand partition function, analogous to the bosonic case

ISR o : ’ 2.4
—;gl—,fm-—m : (2:4)

This is an extension of the familiar expression for BE statistics, with the introduction
of f(z) in the anyon gauge. This expression takes account of the multiplicity factor
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v =25+1 = ¢+ for the reason that & denotes the *spin’ of the anyon. The interpolating
statistics for the anyons also corresponds to an interpolating or variable spin [2]. The limit
o = (¢ yields the usual BE result [4];

= 1

B _
Z _H e (2.5)

We find the grand potential to be
1
QBA = _xTIn2BA = ?kry Y In(1 - fze PE). (2.6)

We can compute the average occupation number N = —98/8 and obtain

aQ 1
= —pig=v Z FETF 2.7)

This is consistent with the original ansatz proposed and, hence, the definition in equation
(2.4) cotrectly describes B-anyons. We proceed to compute the grand potential as follows.
If we isclate the contribution from the zero-momentum state, we find

Qpp = }f:;_ In(l — fz ) + EZ-Z Zln(l fze B8, (2.8)

By converting the sum to an integration, the second term of equation (2.8) can be expressed
as a one-dimensional integral:

_‘i{_}’ fwdx In[1 — fze™*]. 2.9)
A 0

Here, A2 = 2mBh?/m where A is the thermal wavelength and V is the two-dimensional
volume, Employing a power series expansion and integrating term by term, we can express
this second term as

VkTy
a2
where the function F is defined by

Ffz] (2.10)

F[z=zz—2.- - Y AT

This is a sort of generalization of the familiar Riemann zeta function £ (2}, This function
possesses the following integral transform [15]:

Flz)= —]: InQl =) 4 2.12)

u

and obeys the property

(2.13)



Statistical mechanics of anyons 7251

where the prime denotes the derivative with respect to the argument. We, therefore, obtain

QBA kTy
— =——>In{l - - .
v (1-f2) fJLz F[f 1 (2.14)
Upon evaluating the thermodynamic limit V — co, N — 0o, we obtain the expression for
the pressure of the B-anyon gas:

BA _ . _E kT}"
o dm (-5) =Sk @.15)

We can derive a similar result for the occupation number. The summation in equation (2.3)
can be converted into an integration, thus, expressing the average cccupation number as a
one-dimensional integral

Vy [ dx
BA _ _ " £ -
NBA = e j‘; vl (2.16)

Employing 2 power series and integrating, we obtain

BA _
N = —?—i-z- In(1 — fz). .17
By combining the above two relations, we obtain the important result
PV 1
e | = —F 2.18
(NkT)BA V=7 In(1 - fz)’ @1

This is the equation of state for the ideal B-anyon gas derived in the thermodynamic limit.
Evidently, it is not in a closed form. The parameter | f} is smaller than unity for anyons.
The parameter z is temperature dependent and is small in the high-temperature-fow-density
approximation and this, therefore, assures a rapid convergence if we obtain the virial
expansion from an expansion in powers of z. For this purpose, let us first expand the
logarithm. The equation of state is thus

PV (f2 | (f2? -
(W)BA_—F[fz}{f+ +3 +] (2.19)

where the function F is given by a power-series expansion. Next, we need to develop a
power-series expansion for z, for which we utilize the result in equation (2.17). This yields

1 - fz=1—e f¥NIYV (2.20)

and we, therefore, determine z as a function of the density p = N/V

7= ﬂ(l — e~ f¥elry (2.21)
f
which has the power-series expansion

R o L arosy + Lerazosmy— 222
z—yp[ 2!f ply 3!f o1v) ] (2.22)
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This can be inserted into the equation of state (2.19). We now perform the necessary
symbolic mathematics on MATHEMATICA [16] and obtain the complete virial expansion. We
recall the standard form for the virial expansion:

PV AN LAY
—_— =B +B}|—— By | — el 223
(wer ). =227 ) +2(55) + -
For the case of B-anyons, we adhere to the notation convention used for the BE case [14, 17].

Using the notation x = A%p/y = A2N/yV, we obtain the virial coefficients, in terms
of f, from the series

Vv
(P_) = By + Byx + Bax* 4+ .- 4 Byox® + O(x'). (2.24)
NKT )y

The first few coefficients are listed below:

Bi=1 . (2.25)
By=—1 (2.26)
By= %[> 2.27)

The virial coefficients up to order eleven are listed in the appendix. We could list the
virial coefficients to any desired order but we did not see any point in going beyond the
eleventh. Tt is important to stress that in view of the nature of the symbolic mathematics
performed on the computer by MATHEMATICA, all these results for the virial expansion are
exact, as are all the results in this paper, with no approximations made whatsoever.

3. Equation of state and virial expansion: F-anyons

Let us begin with the occupation number for the F-anyons introduced earlier

1
FA _
NP =y Ek  FE ) (3.1)

Analogous to the case of B-ahyons, we find it convenient to regard g(«) as a function of
the standard statistics parameter e, To this number distribution corresponds the following
grand partition function for the fermion-like anyons:

15 1A
2% = — [0+ ge™PE0P = —TTi1 + gze 5, G2
8 i=0 8 i=o

This form conforms to the Fermi case, with the inclusion of the statistics parameter g(o),
and reduces the familiar FD grand partition function [17] in the limit when o = 1, gl{a) = 1.
The exponent is due to the multiplicity factor y = 25 + 1 = o + 1. This is due to the fact
that the anyons which obey an interpolating statistics also have interpolating spin given by
s = a/2. We find the grand potential to be

1
@ =—kTInZ = ——kTy > In(1 + gze#E). 3.3)
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We determine the average occupation number to be
ae 1
pa _ _9ve —_—
N = u =Y Z efEi—1) 4 g 34)

and, thus, the grand partition function of equation (3.2) correctly reproduces the ansatz for
the occupation number for F-anyons. If we convert the sum to an integral, equation (3.4)
can be expressed as

V [4=]
NFA = l’-z_f -# (3.5)
A 7'eF+ g ,

Integration by series expansion yields
m_ YV
We compute the grand potential as follows. Isolating the zero-momentum state, we obtain
kT kT
0= -5 1+ g - T2 Yl + geent®), 37

If we replace the sum by an integral, the second term on the right-hand side may be
expressed as

_ ykTV
gAt

fmdxln(l + ge™¥). (3.8)
0

Employing a series expansion, we, thus, obtain

= =20 100 + 50 - X 61zg) 3.9)
14 gV gAt

where the function G occurring here is defined by

Glal = ) (-1 (3.10)

n=1

We note that the function G defined above has the following integral transform:

¢In(1
Glz] = f A+ @ g, (3.11)
0 22
and satisfies the property
G'ld = &:Q (3.12)

where the prime denotes the derivative with respect to the argument. The pressure of the
F-anyon gas is determined by evaluating the thermodynamic limit V' — oo, N — oot

kT
PPA =  lim (-%) = pFA = -’;?G[zg] (3.13)
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a result different from the case of B-anyons. We can now proceed to develop the virial
expansion for the F-anyon gas. If we combine the above result with the distribution function
given by equation (3.6), we obtain the result

PV 1
(W)FA—-G[Zglm-- ----- I (3.14)

For high temperatures, St is large and negative and z ~ 0, whereas for low temperatures,
B is large and positive and z ~ co. The virial expansion is a high-temperature and/or low-
density expansion. Expanding the logarithm in a series which converges for z2g%(g) < 1
and zg{g)} = I, we obtain

PVY _ (z8)* | (z8%) -
(N—H-)FA—G[zg]{zg— 5 + 3 —] . (3.15)

This leads to the following power-series expansion to express z in terms of the density,
which follows from equation (3.6);

1 1
2= 2@ = = Wply + 58070 y) £ (3.16)

We can then develop a power series in the variable z, by using MATHEMATICA to perform
the necessary symbolic mathematics. We can read off the virial coefficients by comparing
the output from MATHEMATICA with the standard virial expansion for fermion-like objects
in the standard notation [14]:

PV AZN AN
XY a2 e (Y 4 3.17
(NkT)FA. : Z(YV)-,- s()’N) * ( )

The virial coefficients for the F-anyons turn out to be exactly the same as the ones listed in
the appendix with f replaced by g. This circumstance is reminiscent of the virial coefficients
for the ordinary BE and FD systems in three dimensions.

4. Analysis of the statistics parameters

First, in order to relate our parameters f(e) and g(&) to the standard statistics parameter
o = 8/m, we proceed as follows. Arovas ef al [12} have investigated the problem of the
two-dimensjonal free-anyon gas and have derived the following exact result for the second
virial coefficient of B-anyons by employing an expansion about the Bose point § = 0:

BfA=—1+a-ld* (4.1

We shall use this result as a means of calibrating our results for the virial coefficients of B-
anyons. The result in (12] is expressed in terms of another parameter § defined by o = n+4
but we can set n = 0 with no loss of generality. If we require our results to conform to
this exact result, then we have, for B-anyons,

Bit=—i+e—jot=-if 2
!
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This determines our statistics parameter f in terms of the standard parameter a:
flay=1—4da +2a°. (4.3)

Analogously, for F-anyons, we obtain the calibration, using Arovas’ result for the second
virial coefficient, by employing an expansion about the Fermi point 8 = =

B = o’ =—1lg 4.4)

We can solve for g and, thus, arrive at the determination
gle) = 20 — 1. (4.5)

It is interesting to observe that the virial coefficients for the B-anyons and F-anyons
have the same form in terms of the parameter f or g but f and g are not the same in
terms of o. Hence, expressed in terms of the statistics parameter o, the virial coefficients
are different for BA and FaA.

The boson, fermion and semion limits are then as follows

a=0—f=1,g=-1 (4.6)
a=1>f=-1g=1 4.7
a=3>f=—-3.8=-1 (4.8)

It is gratifying to observe that the boson and fermion limits come out exactly right.
Moreover, it is interesting that even though there are two parameters f and g, which
coincide at ¢ = %, it turns out that the semion is not unique. Indeed there are two kinds of
semtons, which will be discussed in the next section.

The quantum Boltzmann case of f = 0 corresponds to & = 1 — 1/+/2 and the case of
g =0comespondstoa = 1 /~/2. The case of f = 0Ois interesting and deserves examination.
Much of the analysis of sections 3 and 4 is performed after division by f or g. Therefore to
study this case, we must return to the original expressions for the total number of particles

and energy. Carrying out the integration in the B-anyon case, for instance, we obtain

(E)f=0 = nyTCﬁ"’ (4.9)
and

(N)g=p = j—‘jem. (4.10)
This leads to

E = NkT PV =E =NkT Bi=1 B,(n#£0)=0 @&.11)
as expected.

Considered as a function of the parameter ¢, the parameter functions are seen to exhibit
Bose-Fermi (B-F) symmetry. The function f, when expressed in terms of «, has the

property
fQ—a) =gl gl —a) = f(a). (4.12)
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Thus f — g when o -~ 1 —c. Consequently, we note that all the virial coefficients possess
a symmetry: BEA(1 — &) = BBA(«). However, it is not true that the B3* possess a kind
of mirror symmetry, which would equate B%4(@) and B®*(1 — «). For instance, we can
calculate BE*(er) — BEA(1 — o) and find
B @) — BPA(1 — o) = oo — 1)(1 - 2u0). (4.13)
We see that this vanishes only for ¢ = 0, 1, %, which are precisely the bosonic, fermionic
and semionic cases. Such a symmetry does not prevail, in general, for the anyonsf.
We observe from the virial coefficients listed in the appendix that all the even coefficients
beyond the second coefficient vanish: By, = 0, n > 2. This remarkable result is reminiscent

of the standard bosonic¢ or fermionic case. Finally, in the limit f = 1, the coefficients we
have obtained revert to the exact values known for bosons [8].

5. Semiens

1

The semicnic case [19] corresponding to o = 3

results

is interesting. Setting o0 = 1, we find the

==  ad=-4 G1
Semionic statistical mechanics is determined by

NSe.m —_—

1
3
3 Z (eFE-) & £)’ ©2)

Consequently, there exist two kinds of semion; in a sense, the middle as approached from
the Bose point and the Fermi point. We do not know the implications of this resuit and
are not aware if this has previously been conjectured. It is conceivable that this may be a
reflection of the non-trivial topology in anyon space.

6. Condensation

Do ideal anyons exhibit a condensation phase at finite temperature? It is important to
investigate this question in view of the conjecture by Laughlin [8] that there is an anyon
condensation phenomenon. Let us examine

Y Y

N, = ) f(oz)‘:‘ —FE F@) (6.1)
where z = e#* and 0 < f < 1, The zero-momentum state can be isolated as
z
Ny = ymﬁ, == (62}

t The strong result quoted in [3), ie. BBA(x) = BPA(1 — o) is pethaps an artefact of the properties of the
supersymmetric operator 1. This operator {J ceases to exist in the limit w» — 0 and, hence, cannot be used to
draw any conclusion in that limit.
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The denominator in N, must be non-negative and, thus, the range for z is given by
0 <z < 1/f and we find that Ny becomes macroscopically large when z = 1/f for
0 <a<]—1/v/2. In the limit when z = 1/f, we find S = —In f, where 0 < f < 1.
Isolating the zero-momentumn state, we can calcelate N/V after replacing the sum by an

integration and thus

N_N_ 1

TV ysz in(1 — fz) (6.3)
_ N 1 & [fl°
=V L (64)

For low densities and/or high temperatures, Ny is negligible, N/V is essentially given by
the second expression and there is nothing more to be said. Let us consider the limiting case
of z = 1/f. The series in equation (6.4) will converge only for |fz| < 1 and fz = —1,
whereas condensation requires fz = 1. Hence, anyons do not appear to exhibit condensation
at a finite temperature. Thus, the non-condensation result for bosons in two dimensions also
applies to anyons.

In a similar manner, we can investigate the case of F-anyons, starting with the expression
for the occupation number

1
N=Y W =% o 6.5)

where g is restricted to —1 > g() > 0. The denominater must remain non-negative for
the unrestricted fagacity range 0 < z < oo, Analogously to equation (6.3), this gives rise
to a term containing In(1 4+ gz) and the series does not converge for gz = —1, which is
when condensation can take place. Hence F-anyons do not exhibit condensation.

7. The specific heat of anyons

We begin with the distribution functions for the two types of anyon. Introducing the
density of states and replacing the sum by an integration, we can express various quantities
as one-dimensional integrals. Invoking the equipartition principle, we have the following
expressions for the energy of the B- and F-anyons:

kTVy = 1
BA —
ER* = 2 fo dxex_ﬁ# —7 (7.1)
and
kTVy [* i '
FA _ —. 7.2
E 1z j{; dxe"—ﬁ#-l-g (7.2)
Employing a power series expansion and integrating term by term, we have
Vy 1l
BA _ _ YV — FoBu 73
N FERY In(l — fe®¥) (7.3)
and
vyl
NF = =L 2 (1 + gefh). (7.4)

Mg
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We can compute the energy of anyons in a similar manner, We obtain

kTVy 1l
EBA = 7 y?F[f efH] (1.5)
and
KTVy 1
EFA o = ¥y (7.6)

All this analysis is reminiscent of the quantum statistics of two-dimensional gases carried
out by May (15]. Accordingly, we introduce the temperature Ty which divides the classical
regime (T > Tp) from that of quantum statistics (T < T3). We further employ the
parameters

N=V/2 1 =g /T 17, = e ST/ 7.7
and note that

MAE =Ty T. (7.8)

Accordingly, we find that the chemical potential, for the two cases determined by

(eﬂ,u)BA — }(1 — e Ty = _]1:_(1 - 1) {1.9)
and
(8‘5”)5,4 = l(egToIT - = ._1. (i — 1) . (7.10)
g £\

The energy of the anyons is then given by

ETVy 1 J/NkT2 1
EPA = —Ffl—1 7.11
27 T f 7] (7.11)
and
2
gFa = KTy 1G[g pup L YNRT AL ), (7.12)
A2 To g Tp
We can now compute the specific heat
dE
Cy = (ar) L= . - (1.13)

We obtain, for the boson- and fermion-like anyons,
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and

(7.15)

n ZNET 1 1 In<,
CH = ——G|——1|+Ne—=
Y Ly g@) [ ] TV

Tg — T

Here we have introduced the notation ¢ = C/ v. We see that in the usual bosonic and
fermionic limit, this reduces to the familiar result [15], namely, that the two specific heats
madulo the multiplicity factor, in two dimensions, become identical

¢E =CE. (7.16)

‘We may recall that [15] ignored the multiplicity factor . The equality of the specific heats
is true only in the above form. We can also study the high-temperature limit as follows. In
the classical regime, for T > T, we have

11— fhy/T Fll-%z]1~0 (7.17)
and
L l-egTy/T Gll — 7] = 0. (71.18)

In this case, we obtain the expected classical result for an ideal gas in two dimensions at
high temperatures:

CBA ~ 1A ~ Nk, (7.19)

Finally, we can demonstrate that the results for the specific heats contained in equations
(7.14) and (7.15) vanish in the [imit 7 — 0 as required by the third law of thermodynamics.
(The vanishing of entropy at zero temperature requires the vanishing of specific heat.) For
this purpose, we need the following property:

G E - 1] = F[1 - z] + 3{nz) (7.20)

which follows from equations (2.12) and (3.11). We find ty — 0 as T — 0 and
Inty = —fTp/T diverges in that limit. Thus, we obtain the limit of the specific heat
of B-anyons:

2NET 1

. SBA g .
Jim €34 = fim == —~ FI1] + Jim Nkry In. (7.21)

We note that F[1] = £(2) = 72/6. An inspection shows that each term in the right-hand
side above vanishes for arbitrary values of f as the temperature approaches zero. For the
case of F-anyons, we find

A INKT 1
. FA . H — - 1 2 : ] 22
%%C ]I_er}) T g(oz){F{l Tg] + 5(InTg) }+71‘1inoNklntg (7.22)

The first term on the right-hand side vanishes and the other two terms cancel and, hence,
the specific heat of the F-anyons vanishes as the temperature approaches zero.
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8. Specific heat and B-F symmetry

In the notation of the cumrent literature, anyon statistics is controlled by the statistics
parameter & = @/m: the BE distribution corresponds to & = ( and the FD statistical
distribution to o = 1. There exists 2 symmetry, which we may call B—F symmetry which.
corresponds to the transformation & — [ —¢, sometimes referred to as the mirror symmetry.
However, this transformation should not be allowed to affect the multiplicity factor y,
occurring in the expressions for specific heat, i.e. we should consider the transformation
o ~» 1 —q, sirictly modulo this factor. Due to the symumetry under this transformation, we
find the following property:

gl —a) = fio) 8.1

which implies the transformation FA — BA. Accordingly, we expect various physical
quantities corresponding to an F-anyon to approach the same quantities corresponding to a
B-anyon under the replacement & — 1 —o. We may now use the identity stated in equation
(7.20) to obtain the result

CEA1 — ) = CBA () (8.2)

which is an anyon generalization of May's result [15]. Thus, the specific heat possesses the
B—F symmetry.

We can now determine the specific heat of semions from the distribution function already
established for the two types of semion. Setting f = —% and g = —1 in the general
distribution function for the average occupation number, we find that the B-anyons and
F-anyons have switched roles, i.e. the F-semion corresponds to setting f = % in equation
(7.14) and the B-semion corresponds to setting g = % in equation (7.15), respectively.
Setting o = % and carrying out the calculation, we obtain the following results {recall that

Cy = yCy):

ONET 1 Ty
chsem _ "2 6 [—-— 1] —3Nk——— 8.3
v To Fd) 4T(1 — zp) @3
and
6NET T 2o
B-Sem _ FI1 — z0] — 3NE-Z A
cB 7 Pl = 20] = 3Nk (8.4)
where
20 = e /2T (8.5)

Finally, now using the identity (7.20), we find that the above two equations become identical,
despite appearances, and, thus,

CRsem o CFwem, (8.6)
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9. Summary and conclusion

The exact statistical distribution function for the anyons has been an outstanding problem
in anyon theory. In this paper, we have attacked this problem directly and in an entirely
new fashion by proposing an ansatz for the explicit anyon distribution function, We have
not derived it from any axiomatic basis and, hence, what we have proposed is a conjecture.
However, it appears to be a natural and simple extension of the usual statistical distribution
function. In this connection, it is interesting to note Wilczek’s statement [2] that ‘it may
be well to state explicitly that the issues invelved in defining particle quantum statistics
are very different from those involved in formulating the commutation or anticommutation
relations for local quantum fields. Whether the additional possibilities for quantum statistics
of particles can be used to define additional possibilities for field quantization in any direct
way, I do not know.” We are currently investigating this question.

Starting from the basic ansatz for the statistical distribution function, and consequently
the grand partition function for anyons, we have developed the equation of state, the virial
expansion and obtained exact analytical answers for the virial coefficients. We have shown
how physical quantities such as the specific heat can be calculated. The expressions we
obtain possess the correct low- and high-temperature limits. We have also demonstrated that
all our expressions and the virial coefficients approach the familiar bosonic and fermionic
cases in the appropriate limits.

In our investigation, we found that it is best to deal with boson-like and fermion-like
anyons separately, We find the virial coefficients are the same or different depending on
which parameter { f, g or &) is used for the bosonic and fermionic anyons, but there are other
properties which are also different. When expressed in terms of the statistics determining
parameter @ = 9/m, we find that the statistical distribution functions are clearly different
for the two types of anyon. We have shown how our parameters f and g, that we have
introduced, can be related to the standard parameter o and determine f and g as functions
of the parameter «. Thus, f = | —4a + 2e? and g = 2% — 1. Our investigations also lead
to some understanding of the statistical mechanics of semions.

‘We have demonstrated the absence of condensation at finite temperature for an ideal gas
of non-relativistic anyons. The case of relativistic anyons is interesting [20] and is under
investigation.

We have also briefly discussed the case of quantum Boltzmann statistics corresponding
to f=0,a=1—1/v/2and g =0, @ = 1/+/2. It is interesting to note that this implies
two kinds of anyon, both obeying the same quantum Boltzmann statistics. In both cases,
despite the vanishing of all the virial coefficients, there is a non-zero Aharanov-Bohm [2]
scattering

s 2

gg - L s.m2 T . ©.1)
¢ 2mwksin®¢/2

This effect, while zero for bosons and fermions, is non-zero for anyons in general and the

quantum Boltzmann case in particular. This effect is what makes this limit f =0 (g =0)

the guantum Boltzmann case.

It is interesting to speculate whether our approach to the anyon problem (of the
distribution function) has any connection to g-mutators or g-oscillators. The subject of ‘g-
deformed statistical distributions’ has been investigated by Parthasarathy and Viswanathan
[21] who introduced such a distribution by considering the g-boson algebra [22]

AAt —gATA =1 [N,Al=~A [N, Al] = A 9.2)
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with the number operator N given by
AAt —AtA = g¥ 9.3)

and, interestingly, not by AA. Using a model for the Hamiltonian defined by

H=73 (Ec— mNy 94
k

one then introduces the thermal-averaged occupation number [N;] which actually turns out
to be a power series involving Ny, which can be interpreted as including interactions, such
that it becomes N in the limit ¢ — 1. One then establishes that this occupation number is
given by

1
([N} = FEm g ' : (9.5)

A parallel analysis holds [21] for the g-deformed fermion case.

We are aware that anyons are not local objects and are representations of the braid
group. Thus, anyons cannot be equivalent to g-mutators, g-deformed bosons and fermions
or g-oscillatorst. However, our analysis does indeed lead us to speculate that there may
be some connection between anyons and ‘generalized g-oscillators’, with the generalization
g — ¢(g) simulating nonlinear effects. This needs further investigation.

In this paper, we have developed a statistical mechanics for anyons. The ramifications
for two-dimensional systems in the phenomenon of superfluidity, magnetism etc will be
reported in a forthcoming publication.

Appendix. Virial coefficients of the anyon gas

= = —— = — By =
Bl 1 Bz 4f B3 36f 4 0
By = — i Bs=0 By=— f° By =0
5= 3600 8= 77 211680 8=
i : 24129341
Bs = 08862007 B =0 Bu = 3% 14d0607

The above are the virial coefficients for B-anyons. These can be expressed in terms
of the parameter @ = 6/x by employing the result f = | — 4o + 202, The boson limit
corresponds to f = 1. Cormrespondingly, for F-anyons, the virial coefficients are the same as
above, with the replacement f — g. In that case, the substitution g = 202 — 1 will express
the virial coefficients in terms of the standard parameter . The fermion limit corresponds
to g = 1. The semions correspond to f = g = —% and the quantum Boltzmann case
corresponds to f =0 (g = 0) and, in the latter case, all the virial coefficients except By
vanish.

{ We thank the referee for pointing this out to us.
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