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Statistical mechanics of anyons 
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Absmct We propose 3 neu' genenlized s labst id mechanics for anyons bned on 3 simple 
ans312 thx has thhc correa familiar lrnuting We denre the an)on quauon of swe from [he 
gand  pamoon function We develop the vinal expmrion and ob" dl the vlrial coefficients. 
Funhermore. we dcmonrvve hob thermod)n-c quanurics such as lhc molar specific hear 
can readil) be calculaed We d~scurs the propemes of semions and also demonsmtc t h t  ideal 
non-relativistic an)oos do not exhibit finite temperame condcns8tioo. 

1. Introduction 

Planar .physical systems, in two space and one time dimensions, display many peculiar 
and interesting quantum properties which have to do with the unusual structure of the 
rotation, Lorentz and Poincar€ groups in 2 + 1 dimensions. These features lead to richer 
possibilities for the quantum mechanics of angular momentum and, in particular, give rise 
to the existence of quantum states with anguIar momentum not quantized in the famiIiar 
half-integer units. These objects, named anyons [1-71, have begun to attract a great deal 
of attention. The anyon may be relevant to the explanation of a variety of interesting 
physical phenomena, such as the Aharanov-Bohm effect, fractional quantized Hall effect, 
high-temperature superconductivity and others. 

In two dimensions, a particle can he rotated around another particle and such a 
transformation enables the two-particle wavefunction to develop a phase which is not well 
defined in dimensions higher than two and is uniquely defined only in two dimensions. 
Consequently, the spin may be arbitrary, and on account of the connection between spin 
and statistics, the statistics is arbitrary in two dimensions. 

Anyons lead to a generalization of the usual definition of statistics and the spin-statistics 
theorem. In two space dimensions, the wavefunction of the n-particle system Ilr(ql, . . . , qn) 
will satisfy 

rl.(@,. . . , q j ,  . . . , qi, . . . ,4.) = e"uf(q1, ... .4i. ..., qj,  . .., 4.) (1.1) 

where the statistics parameter a is an arbitrary real number of modulo integer and the qj 
refer to the coordinates and other quantum numbers. Bosons and fermions correspond to 
(Y = 0 and 1, respectively. The generalization to any statistics corresponds to a = any real 
number [2,4,5]. 
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The anyon is a particle which carries both a 'charge' e and a magnetic flux @, which 
possesses a spin s = -e@/2hc, which is, in general, neither an integer nor a half integer. 
The ChernSimons theory (CS) provides a natural realization of the anyon with fractional 
statistics. There is a remarkable and mysterious connection between anyons and two- 
dimensional conformal field theory, i.e. the algebra of the conformal group SO(2, I ) ,  in 
two dimensions, is a symmetry group of cs theory. 

angle 8 which denotes the strength of the fictitious 
flux in the magnetic gauge. When two identical anyons are exchanged, the wavefunction 
develops a phase e*. Anyonic theories specified by 8 and 8 + 2n are identical and we 
can, therefore, restrict the variable to the interval -x < 8 < 7r. Furthermore, theories with 
8 and -8 are related by panty or time reversal and so one could restrict the range of 8 
to between 0 and x .  The values 8 = 0 and 7r correspond to the bosonic and fermionic 
cases, respectively. Alternatively, one could characterize anyon statistics by the parameter 
a = 8/x, where in two dimensions a can vary continuously between 0 and 1 and thus 
interpolate between Bose and Fermi statistics, i.e. a = 0 yields the Bose-Einstein (BE) 
distribution and 01 = 1 corresponds to the Fermi-Dirac (FD) distribution. The intermediate 
value a = 4 corresponds to the semion. In the so-called anyon gauge, the anyon Hamiltonian 
is identical to those for bosons and fermions but the wavefunction satisfies the 'twisted' 
boundary condition: $(8 + 2x)  = e'"Bq(8), with 0 < a < 1.' The breaking of the parity 
P and time reversal T discrete symmetries is considered the hall mark of anyon statistics 
and this provides a possible signal for experiments to detect the presence of anyons in 
two-dimensional phenomena. 

The collective excitations above the ground state of systems which exhibit the fractional 
quantum Hall effect have been identified as quasi particles of fractional spin and charge 
which obey fractional anyon statistics. Anyons have also been conjectured to play an 
important role in the theory of high-temperature superconductivity. Furthermore, semions 
have also been conjectured to play a role in the pairing theory of high-temperature 
superconductors. It has been discovered by Laughlin [8] that an ideal anyon gas is a 
superfluid and, consequently, a gas of charged anyons would exhibit superconductivity. 

The precise form of the statistical distribution function for anyons remains unknown and 
is the outstanding problem in anyon theory today. There have been interesting conjectures 
on the statistics interpolating between BE and FD statistics 191 but no clear answers have 
emerged. There have been perturbative investigations of the anyon gas [lo]. This approach 
to the problem involves a perturbative study into the properties of the anyon gas at values 
close to 8 = 0 or K, regarded as an expansion around the boson or fermion, which can 
yield approximate results for the statistical properties of the anyon gas [ I  11. The exact two- 
particle partition function has been solved by Arovas eral [12] leading to a computation of 
the second vinal coefficient in the virial expansion, which is valid for low densities and/or 
high temperatures. Some progress has been made in the computation of the third virial 
coefficient. Since determining the grand partition function and establishing the equation of 
state is a many-anyon problem. it has been regarded as an insoluble problem and no exact 
results are known. 

It is the purpose of this paper to attack the problem in an entirely new fashion. We begin 
with the simplest natural generalization of the familiar BE and FD statistical distribution 
function. We are then lead to an ansatz which, to the best of our knowledge, correctly 
describes the statistical distribution for anyons. On the basis of this, we are able to develop 
a full statistical anyon theory and obtain all the usual statistical and thermodynamic quantities 
characterizing anyons. We hope this will lead to a better understanding of the statistical, 
thermodynamical and other properties of the anyon gas. 

Anyonic theory is determined by 
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2. Equation of state and vinal expansion: B-anyons 

We begin with the requirement that the statistical distribution function for anyons should 
involve the statistics determining parameter a explicitly and it should have the correct 
smooth limiting forms when CY = 0 (bosonic case) and 1 (fermionic case). We, therefore, 
propose that the following ansatz provides the appropriate distribution function for the 
anyons: 

where f(a) is a function of a which satisfies the boundary conditions or property: f (0) = 1, 
f (+l) = -1. We further require that f (0) = 0 in order to include the quantum Boltzmann 
case [ 131. We shall also assume that the statistics determining parameter CY and, hence, f ( a )  
is independent of temperature. This ansa& is our conjecture and fundamental postulate and, 
aside from these boundary conditions, there are no restrictions on the function f (a). Here, 
k labels the energy states, ,9 = l / k T ,  p is the chemical potential and y = a + 1 = 2s + 1 
denotes the multiplicity. This form interpolates between BE statistics, with a = 0, and FD 
statistics with a = 1. The sum in equation (2.1) gives the correct distribution function for 
the cases of BE and FD statistics but there is a problem with the case of anyons since the 
N-body wavefunction cannot be constructed from products of singleparticle wavefunctions, 
because one has to represent the braid group. Therefore, one needs to work in the anyon 
gauge [SI when the Hamiltonian is identical for bosonic, fermionic and anyonic systems but 
the many-body wavefunctions have different symmetry properties for different statistics. 

There are sound reasons why we should consider the two cases of positive and negative 
values for f (a) separately. For the case of negative f (a), let us set f(a) = -g(a), and, 
thus, consider the generalization which enables us to deal with two types of anyon. The 
range of a which corresponds to f > 0 and g > 0 will not be specified at this point. 
Indeed, we shall determine and discuss it  later. Accordingly, the following distribution 
functions describe boson-like (B-anyons, abbreviated as BA) and fermion-like anyons (F- 
anyons, abbreviated as FA): 

henceforward, regarding f and g as functions of the parameter a. We shall first investigate 
the equation of state for boson-like anyons, without conceming ourselves with condensation. 
Thus, the average occupation number of B-anyons is given by 

where eflp = z is the fugacity. Corresponding to this ansatz for the anyons, we propose the 
following ansatz for the grand partition function, analogous to the bosonic case 

(2.4) 

This is an extension of the familiar expression for BE statistics, with the introduction 
of f (a) in the anyon gauge. This expression takes account of the multiplicity factor 
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y = 2s + 1 = 01 + 1 for the reason that 01 denotes the 'spin' of the anyon. The interpolating 
statistics for the anyons also corresponds to an interpolating or variable spin [ Z ] .  The limit 
01 = 0 yields the usual BE result [4]: 

R Acharja and P Narayana Swamy 

We find the grand potential to be 

(2.6) 
1 

f n B A = - k T l n Z B A = - k T y C I n ( l -  fze-pE). 

We can compute the average occupation number N = -an/ap and obtain 

This is consistent with the original ansatz proposed and, hence, the definition in equation 
(2.4) correctly describes B-anyons. We proceed to compute the grand potential as follows. 
If we isolate the contribution from the zero-momentum state, we find 

By converting the sum to an integration, the second term of equation (2.8) can be expressed 
as a one-dimensional integral: 

Here, h2 = 2nph2 /m where A is the thermal wavelength and V is the two-dimensional 
volume. Employing a power series expansion and integrating term by term, we can express 
this second term as 

where the function F is defined by 

(2.10) 

(2.1 1) 

This is a sort of generalization of the familiar Riemann zeta function c(2). This function 
possesses the following integra1 transform [15]: 

F [ z ]  - du (2.12) 

and obeys the property 

(2.13) 
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where the prime denotes the derivative with respect to the argument. We, therefore, obtain 

(2.14) 

Upon evaluating the thermodynamic limit V + 00, N + 00, we obtain the expression for 
the pressure of the B-anyon gas: 

(2.15) 

We can derive a similar result for the occupation number. The summation in equation (2.3) 
can be converted into an integration, thus, expressing the average occupation number as a 
one-dimensional integral 

Employing a power series and integrating, we obtain 

By combining the above two relations, we obtain the important result 

(2.16) 

(2.17) 

(2.18) 

This is the equation of state for the ideal B-anyon gas derived in the thermodynamic limit. 
Evidently, it is not in a closed form. The parameter I f  I is smaller than unity for anyons. 
The parameter z is temperature dependent and is small in the high-temperature-low-density 
approximation and this, therefore, assures a rapid convergence if we obtain the visial 
expansion from an expansion in powers of z .  For this purpose, let us first expand the 
logarithm. The equation of state is thus 

(2.19) 

where the function F is given by a power-series expansion. Next, we need to develop a 
power-series expansion for z, for which we utilize the result in equation (2.17). This yields 

1 - f z  = 1 - ,-fi'N/Yv (2.20) 

and we, therefore, determine z as a function of the density p = N / V  

which has the power-series expansion 

(2.21) 

(2.22) 
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This can be inserted into the equation of state (2.19). We now perform the necessary 
symbolic mathematics on MATHEMATICA 11-51 and obtain the complete virial expansion. We 
recall the standard form for the virial expansion: 

R Acharya and P Narayana Swamy 

3 

( = BI + Bz (gr + E3 ($) + . . . . (2.23) 

For the case of B-anyons, we adhere to the notation convention used for the BE case [14,17]. 
Using the notation x = h2p/y  = I Z N / y V ,  we obtain the virial coefficients, in terms 

o f f ,  from the series 

(2.24) 

The first few coefficients are listed below: 

B i = l  , (2.25) 

B2 = -+ f (2.26) 

= $ f Z .  (2.27) 

The virial coefficients up to order eleven are listed in the appendix. We could list the 
virial coefficients to any desired order but we did not see any point in going beyond the 
eleventh. It is important to stress that in view of the nature of the symbolic mathematics 
performed on the computer by MATHEMATICA, all these resultsfor the virial expansion are 
exact, as are all the results in this paper, with iw approximations made whatsoever. 

3. Equation of state and virial expansion: F-anyons 

Let us begin with the occupation number for the F-anyons introduced earlier 

Analogous to the case of B-anyons, we find it convenient to regard g(a )  as a function of 
the standard statistics parameter a. To this number distribution corresponds the following 
grand partition function for the fermion-like anyons: 

This form conforms to the Fermi case, with the inclusion of the statistics parameter g(a), 
and reduces the familiar FD grand partition function [17] in the h i t  when IY = 1, g(0r) = 1. 
The exponent is due to the multiplicity factor y = 2s -t 1 = 01 + 1. This is due to the fact 
that the anyons which obey an interpolating statistics also have interpolating spin given by 
s = 4 2 .  We find the grand potential to be 

1 
g 

Q = - k T I n Z  = - - k T y z l n ( l  +gzeC8"). (3.3) 
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We determine the average occupation number to be 

(3.4) 

and, thus, the grand partition function of equation (3.2) correctly reproduces the ansatz for 
the occupation number for F-anyons. If we convert the sum to an integral, equation (3.4) 
can be expressed as 

V dx FA - Y 
-7.L z-'e"+g (3.5) 

Integration by series expansion yields 

V 
(3.6) FA - Y N - - In(1 + gz). 

gAZ 

We compute the grand potential as follows. Isolating the zero-momentum state, we obtain 

(3.7) 

If we replace the sum by an integral, the second term on the right-hand side may be 
expressed as 

--lmdxin(l+ge-x).  

Employing a series expansion, we, thus, obtain 

ykT  ' - y k T  l n ( l +  gz) - - ~ [ z g l  v g v  gA2 
- - -_ 

where the function G occurring here is defined by 

Z" m 
G[zl = E(-1)"+I7. 

ll=l 

We note that the function G defined above has the followir 

ln(1 + U )  
Gtzl = 1 du 

and satisfies the property 

In(1 + z) G'[z] = 
Z 

integral transform: 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where the prime denotes the derivative with respect to the argument. The pressure of the 
F-anyon gas is determined by evaluating the thermodynamic limit V -+ CO, N + CO: 

(3.13) 
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a result different from the case of B-anyons. We can now proceed to develop the virial 
expansion for the F-anyon gas. If we combine the above result with the distribution function 
given by equation (3.6). we obtain the result 

R Acharya and P Narayana Swamy 

(3.14) 

For high temperatures, p p  is large and negative and L - 0, whereas for low temperatures, 
,9p is large and positive and z - CO. The virial expansion is a high-temperature and/or low- 
density expansion. Expanding the logarithm in a series which converges for z2g2(q) < 1 
and zg(q) = 1, we obtain 

( g)FA = G[zg] {zg - + - 3 
- ' . . (3.15) 

This leads to the follo,wing power-series expansion to express z in terms of the density, 
which follows from equation (3.6): 

(3.16) 1 1 

g 
2 = -(CpPA2'' - I )  = h2p/y + z g ( h 2 p / y ) Z  -t . . . . 

We can then develop a power series in the variable z ,  by using MATHEMATICA to perform 
the necessary symbolic mathematics. We can read off the virial coefficients by comparing 
the output from MATHEMATICA with the standard virial expansion for fermion-like objects 
in the standard notation [14]: 

(3.17) 

The vinal coefficients for the F-anyons turn out to be exactly the same as the ones listed in 
the appendix with f replaced by g. mis circumstance is reminiscent of the virial coefficients 
for the ordinary BE and FD systems in three dimensions. 

4. Analysis of the statistics parameters 

Fist, in order to relate our parameters f (01) and g(a) to the standard statistics parameter 
01 = O/n, we proceed as follows. Arovas et al [12] have investigated the problem of the 
two-dimensional freeanyon gas and have derived the following exact result for the second 
virial coefficient of B-anyons by employing an expansion about the Bose point O = 0: 

(4.1) 

We shall use this result as a means of calibrating our results for the virial coefficients of B- 
anyons. The result in [12] is expressed in terms of another parameter 6 defined by 01 = n+6 
but we can set n = 0 with no loss of generality. If we require our results to conform to 
this exact result, then we have, for B-anyons, 

BA - - 1  - iOI 1 2  , Bz - 5 
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This determines our statistics parameter f in terms of the standard parameter a: 

f(a)=1-4a+20r2. (4.3) 

Analogously, for F-anyons, we obtain the calibration, using Amvas’ result for the second 
vinal coefficient, by employing an expansion about the Fermi point 0 = n: 

(4.4) F A - 1  1 2 -  B, - ; - p  _ - -  :g. 

We can solve for g and, thus, arrive at the determination 

g(a )  = 2 2  - 1 .  (4.5) 

It is interesting to observe that the virial coefficients for the B-anyons and F-anyons 
have the same form in terms of the parameter f or g but f and g are not the same in 
terms of a. Hence, expressed in terms of the statistics parameter a, the virial coefficients 
are different for BA and FA. 

The boson, fermion and semion limits are then as follows 

a = o +  f =  1,g = - 1  

a = 1 -+ f =  - l , g =  1 

(4.6) 

(4.7) 

(4.8) a - 1 + f -4, g -?, 1 
2 

It is gratifying to observe that the boson and fermion limits come out exactly right. 
Moreover, it is interesting that even though there are two parameters f and g, which 
coincide at a = i, it turns out that the semion is not unique. Indeed there are two kinds of 
semions, which will be discussed in the next section. 

The quantum Boltzmann case of f = 0 corresponds to a = 1 - 1 /A  and the case of 
g = 0 corresponds to a = I / &  The case off  = 0 is interesting and deserves examination. 
Much of the analysis of sections 3 and 4 is performed after division by f or g. Therefore to 
study this case, we must return to the original expressions for the total number of particles 
and energy. cillrying out the integration in the B-anyon case, for instance, we obtain 

(4.9) 

and 

(4.10) Y V  
hZ 

(N)fd = -esp. 

This leads to 

E = NkT PV = E = NkT B1 = 1  B.(n#O)=O (4.11) 

as expected. 
Considered as a function of the parameter a, the parameter functions are seen to exhibit 

Bose-Fermi (B-F) symmetry. The function f ,  when expressed in terms of a, has the 
property 

f (1  - a) = g ( 4  g(1 -4 = f@). (4.12) 
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Thus f + g when a! + 1 -01. Consequently, we note that all the vinal coefficients possess 
a symmetry: BIA(l  - a!) = B f A ( a ) .  However, it is not true that the B f A  possess a kind 
of mirror symmetry, which would equate BBA(a!) and BBA(l -a!). For instance, we can 
calculate BfA(a!)  - B,BA(l - 01)  and find 
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B,B*(a!) - B,BA(I - a!) = $a!(. - 1)(1 - zol). (4.13) 

We see that this vanishes only for a! = 0, 1, 4, which are precisely the bosonic, fermionic 
and semionic cases. Such a symmetry does not prevail, in general, for the anyonst. 

We observe from the vinal coefficients listed in the appendix that all the even coefficients 
beyond the second coeffcient vanish: Bz, = 0, n > 2. This remarkable result is reminiscent 
of the standard bosonic or fermionic case. Finally, in the limit f = I, the coefficients we 
have obtained revert to the exact values known for bosons [18]. 

5. Semions 

The semionic case [191 corresponding to 01 = 1 is interesting. Setting a! = $, we find the 
results 

(5.1) f(') --I g($) = -?. I 2 -  2 

Semionic statistica1 mechanics is determined by 

Consequently, there exist two kinds of semion; in a sense, the middle as approached from 
the Bose point and the Fermi point. We do not know the implications of this result and 
are not aware if this has previously been conjectured. It is conceivable that this may be a 
reflection of the non-trivial topology in anyon space. 

6. Condensation 

Do ideal anyons exhibit a condensation phase at finite temperature? It is important to 
investigate this question in view of the conjecture by Laughlin 181 that there is an anyon 
condensation phenomenon. Let us examine 

where z = e5& and 0 < f c 1. The zero-momentum state can be isolated as 

t The smng result quoted in [SI, i.e. @"(U) = B:*(I - a) is perhaps an artefact of the properties of the 
supersymmetric openlor Q. This openlor Q ceases U) exist in the limit o + 0 and, hence, cannot be used to 
draw any conclusion in that limit. 
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The denominator in N,, must be non-negative and, thus, the range for z is given by 
0 < z < l/f and we find that NO becomes macroscopically large when z = l/f for 
0 c 01 < 1 - l/d. In the limit when z = l/f, we find pp = -In f ,  where 0 c f c 1. 
Isolating the zero-momentum state, we can calculate N I V  after replacing the sum by an 
integration and thus 

For low densities and/or high temperatures, NO is negligible, N / V  is essentially given by 
the second expression and there is nothing more to be said. Let us consider the limiting case 
of z = l /f .  The series in equation (6.4) will converge only for I fzl c 1 and fz = -1, 
whereas condensation requires f z = 1. Hence, anyons do not appear to exhibit condensation 
at a finite temperature. Thus, the non-condensation result for bosons in two dimensions also 
applies to anyons. 

In a similar manner, we can investigate the case of F-anyons, starting with the expression 
for the occupation number 

where g is restricted to -1 > g(a )  > 0. The denominator must remain non-negative for 
the unrestricted fugacity range 0 < z c 03. Analogously to equation (6.3), this gives rise 
to a term containing In(1 + gz) and the series does not converge for gz = -1, which is 
when condensation can take place. Hence F-anyons do not exhibit condensation. 

I. The specific heat of anyons 

We begin with the distribution functions for the two types of anyon. Introducing the 
density of states and replacing the sum by an integration, we can express various quantities 
as one-dimensional integrals. Invoking the equipartition principle. we have the following 
expressions for the energy of the B- and F-anyons: 

and 

Employing a power series expansion and integrating term by term, we have 

(7.3) 

and 

(7.4) 
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We can compute the energy of anyons in a similar manner. We obtain 
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and 

All this analysis is reminiscent of the quantum statistics of two-dimensional gases carried 
out by May [IS]. Accordingly, we introduce the temperature TO which divides the classical 
regime (T  > TO) from that of quantum statistics (T c TO). We further employ the 
parameters 

(7.7) - l % l T  -e-sWT N = VIA: rf = e  8 -  

and note that 

A’ f A i  = To/ T 

Accordingly, we find that the chemical potential, for the two cases determined by 

and 

The energy of the anyons is then given by 

and 

G[seB”] = -- 
To g 

k T V y  1 EFA = -- 
A? 8 

We can now compute the specific heat 

C” = (g) 
N.V 

We obtain, for the boson- and fermion-like anyons, 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 
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and 

In t, 
G - - 1  +Nk-. ?;A = -- 

2NkT To [:, ] I - t ,  
(7.15) 

Here we have introduced the notation ? = C/y. We see that in the usual bosonic and 
fermionic limit, this reduces to the familiar result [ 151, namely, that the two specific heats 
modulo the multiplicity factor, in two dimensions, become identical 

(7.16) 

We may recall that [15] ignored the multiplicity factor y .  The equality of the specific heats 
is true only in the above form. We can also study the high-temperature limit as follows. In 
the classical regime, for T > TO, we have 

"B - E F  cv- V' 

tf % 1 - f T o / T  F[1 - t i ]  * O  (7.17) 

and 

ts % 1 - gTo/T G[1 - rg] * 0. (7.18) 

In this case, we obtain the expected classical result for an ideal gas in two dimensions at 
high temperatures: 

CFA CFA XY Nk. (7.19) 

Finally, we can demonstrate that the results for the specific heats contained in equations 
(7.14) and (7.15) vanish in the limit T + 0 as required by the third law of thermodynamics. 
(The vanishing of entropy at zero temperature requires the vanishing of specific heat.) For 
this purpose, we need the following property: 

(7.20) 

which follows from equations (2.12) and (3.11). We find r,- -P 0 as T + 0 and 
l n q  = - f T o / T  diverges in that limit. Thus, we obtain the limit of the specific heat 
of B-anyons: 

F[1] + lim NkgInt,. lim C, = lim -- 
T-0 T-rO To f(a) T+O 

~ % A  2NkT 1 
(7.21) 

We note that F[1] = 5(2) = d / 6 .  An inspection shows that each term in the right-hand 
side above vanishes for arbitrary values of f as the temperature approaches zero. For the 
case of F-anyons, we find 

{ F [ 1 - r ~ , l + ~ ( l n t s ) 2 ~ +  lim NkInt,. (7.22) lim eFA - lim -- 
T-tO " - T + l  To g(a) T-0 

2NkT 1 

The first term on the right-hand side vanishes and the other two terms cancel and, hence, 
the specific heat of the F-anyons vanishes as the temperature approaches zero. 
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8. Specific heat and B-F symmetry 

In the notation of the current literature, anyon statistics is controlled by the statistics 
parameter a = 0/n: the BE distribution corresponds to a = 0 and the FD statistical 
distribution to a = 1. There exists a symmetry, which we may call B-F symmetry which 
corresponds to the transformation a + I -a, sometimes referred to as the mirror symmetry. 
However, this transformation should not be allowed to affect the multiplicity factor y ,  
occurring in the expressions for specific heat, i.e. we should consider the transformation 
a -+ 1 -a, saictly modulo this factor. Due to fhe symmetry under this transformation, we 
find the following property: 
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g(1 - a) = f(a) (8.1) 

which implies the transformation FA -+ BA. Accordingly, we expect various physical 
quantities corresponding to an F-anyon to approach the same quantities corresponding to a 
B-anyon under the replacement (Y 1 -a. We may now use the identity stated in equation 
(7.20) to obtain the result 

cv FA (1 -a) = e;"(.) 

which is an anyon generalization of May's result [lS]. Thus, the specific heat possesses the 

We can now determine the specific heat of semions from the distribution function already 
established for the two types of semion. Setting f = -4 and g = -4 in the general 
distribution function for the average occupation number, we find that the B-anyons and 
F-anyons have switched roles, i.e. the F-semion corresponds to setting f = 4 in equation 
(7.14) and the B-semion corresponds to setting g = 4 in equation (7.15). respectively. 
Setting a = 4 and carrying out the calculation, we obtain the following results (recall that 

B-F Sym"y .  

C" = y e " ) :  

and 

C;-Sem = - 6NkT F[1 - z o l - ? N k - -  To zo 
To 4T 1 -ZO (8.4) 

where 

Finally, now using the identity (7.20) we find that the above two equations becoEe identical, 
despite appearances, and, thus, 

(8.6) cpm = CF-sem v ,  



Statistical mechanics of anyons 7261 

9. Summary and conclusion 

The exact statistical distribution function for the anyons has been an outstanding problem 
in anyon theory. In this paper, we have attacked this problem directly and in an entirely 
new fashion by proposing an ansatz for the explicit anyon distribution function. We have 
not derived it from any axiomatic basis and, hence, what we have proposed is a conjecture. 
However, it appears to be a natural and simple extension of the usual statistical distribution 
function. In this connection, it is interesting to note Wilczek's statement [2] that 'it may 
be well to state explicitly that the issues involved in defining particle quantum statistics 
are very different from those involved in formulating the commutation or anticommutation 
relations for local quantum fields. Whether the additional possibilities for quantum statistics 
of particles can be used to define additional possibilities for field quantization in any direct 
way, I do not know.' We are currently investigating this question. 

Starting from the basic ansatz for the statistical distribution function, and consequently 
the grand partition function for anyons, we have developed the equation of state, the virial 
expansion and obtained exact analytical answers for the virial coefficients. We have shown 
how physical quantities such as the specific heat can be calculated. The expressions we 
obtain possess the correct low- and high-temperature limits. We have also demonstrated that 
all our expressions and the virial coefficients approach the familiar bosonic and fermionic 
cases in the appropriate limits. 

In our investigation, we found that it is best to deal with boson-like and fermion-like 
anyons separately. We find the virial coefficients are the same or different depending on 
which parameter (f, g or a) is used for the bosonic and fermionic anyons, but there are other 
properties which are also different. When expressed in terms of the statistics determining 
parameter a = e/a,  we find that the statistical distribution functions are clearly different 
for the two types of anyon. We have shown how our parameters f and g, that we have 
introduced, can be related to the standard parameter a and determine f and g as functions 
of the parameter a. Thus, f = 1 - 4a t 2a2 and g = 2olz - 1. Our investigations also lead 
to some understanding of the statistical mechanics of semions. 

We have demonstrated the absence of condensation at finite temperature for an ideal gas 
of non-relativistic anyons. The case of relativistic anyons is interesting [20] and is under 
investigation. 

We have also briefly discussed the case of uantum Boltzmann statistics corresponding 
to f = 0, a = 1 - I/& and g = 0, a = l/h. It is interesting to note that this implies 
two kinds of anyon, both obeyicg the same quantum Boltzmann statistics. In both cases, 
despite the vanishing of all the virial coefficients, there is a non-zero Aharanov-Bohm [2] 
scattering 

du 1 sin'aa 
d4  21rk sinZ4/2' (9.1) - = -- 

This effect, while zero for bosons and fermions, is non-zero for anyons in general and the 
quantum Boltzmann case in particular. This effect is what makes this limit f = 0 (g = 0) 
the quantum Boltzmann case. 

It is interesting to speculate whether our approach to the anyon problem (of the 
distribution function) has any connection to q-mutators or q-oscillators. The subject of 'q- 
deformed statistical distributions' has been investigated by Parthasarathy and Viswanathan 
[21] who introduced such a distribution by considering the q-boson algebra [22] 

AA+ - qAtA = 1 [ N ,  A] = - A  [ N ,  At] = At (9.2) 
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with the number operator N given by 
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AA+ - A + A  = q N  (9.3) 

and, interestingly, not by AtA. Using a model for the Hamiltonian defined by 

(9.4) 

one then introduces the thermal-averaged occupation number [Nk] which actually turns out 
to be a power series involving Nk, which can be interpreted as including interactions, such 
that it becomes Nk in the limit q + 1. One then establishes that this occupation number is 
given by 

A parallel analysis holds [21] for the q-deformed fermion case. 
We are aware that anyons are not local objects and are representations of the braid 

group. Thus, anyons cannot be equivalent to q-mutators, q-deformed bosons and fermions 
or q-oscillatorst. However, our analysis does indeed lead us to speculate that there may 
be some connection between anyons and ‘generalized q-oscillators’, with the generalization 
q + @(q) simulating nonlinear effects. This needs further investigation. 

In this paper, we have developed a statistical mechanics for anyons, The ramifications 
for two-dimensional systems in the phenomenon of superfluidity, magnetism etc will be 
reported in a forthcoming publication. 

Appendix. Vinal coefficients of the anyon gas 

1 
Bs=O B7=- f6 Bg=O 

1 
Bs = -f4 

3600 21 1 680 

f 10, 
1 24 129341 

2 286 144 000 f 8  Bio = O  B I I  = 
10886400 

Bs = 

The above are the virial coefticients for B-anyons. These can be expressed in terms 
of the parameter CY = O/n by employing the result f = 1 - 401 + 2aZ. The boson limit 
corresponds to f = 1. Correspondingly, for F-anyons, the virial coefficients are the same as 
above, with the replacement f + g. In that case, the substitution g = 2or2 - 1 will express 
the virial coefficients in terms of the standard parameter a. The fermion limit corresponds 
to g = 1. The semions correspond to f = g = -4 and the quantum Boltzmann case 
corresponds to f - 0  (g = 0) and, in the latter case, all the virial coefficients except E1 
vanish. 

t We thank the referee for pointing this out to us 
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